# Polinomios de gráficas listón y descomposiciones de Heegaard de 3-variedades

Escuela Fico González Acuña de nudos y 3-variedades 2024

José Frías

Facultad de Ciencias, UNAM

6 de diciembre de 2024

# 1. Introducción

# Motivación

Davies, A. et al. Nature 600, 70–74 (2021).
 "Advancing mathematics by guiding human intuition with AI".

Mark Lackenby: "I was very struck at just how useful the machine-learning tools could be as a guide for intuition." Jeffrey Weeks: "Getting the computer to seek out patterns takes the research process to a qualitatively different level."

## 1.0. Teoría de Nudos

#### Definición

Un **nudo** es un encaje (suave o lineal por pedazos)  $f : \mathbb{S}^1 \to \mathbb{R}^3$  (a veces se consideran encajados en  $\mathbb{S}^3$ ).



# Definición

Dos nudos  $K_1$  y  $K_2$  son **equivalentes** si existe una isotopía de ambiente en  $\mathbb{R}^3$  que lleva a  $K_1$  en  $K_2$ .



#### Teorema

Dos nudos  $K_1$  y  $K_2$  representados por diagramas  $D_1$  y  $D_2$  son equivalentes si existe una sucesión finita de movidas de Reidemeister que llevan  $D_1$  en  $D_2$ .



#### Invariantes de nudos

Binarios: alternancia, hiperbolicidad.
Numéricos: número de cruces, número de puentes, signatura.
Geométricos: exterior, volumen, pendiente natural.
Polinomiales: Alexander, Jones, HOMPFLY.
Homológicos: homología de Khovanov, homología de Floer.

Invariantes polinomiales de nudos

#### Polinomio de Alexander

- Propuesto por J. W. Alexander en 1923, como el generador de un ideal principal de un ℤ[t, t<sup>-1</sup>]-módulo obtenido a partir de la cubierta cíclica infinita del exterior del nudo.
- Es un polinomio de Laurent simétrico en una variable y se denota como Δ<sub>K</sub>(t) ∈ ℤ[t, t<sup>-1</sup>].

#### Polinomio de Jones

- Introducido por V. Jones en 1984, como una traza de una representación del grupos de trenzas en un álgebra (en ciertos modelos físicos).
- A cada nudo o enlace orientado K le asocia un polinomio de Laurent en la variable  $t^{1/2}$ , que se denota por  $V_K(t)$ .

#### Relaciones de Madeja (Skein relations)

 $L_0, L_+$  y  $L_-$  son tres diagramas de nudos o enlaces orientados que difieren en un cruce por:



#### Polinomio de Jones

(i) 
$$V_{\circ}(t) = 1$$
  
(ii)  $(t^{1/2} - t^{-1/2})V_{L_0}(t) = t^{-1}V_{L_+}(t) - tV_{L_-}(t)$ 

Polinomio de Alexander-Conway

(i) 
$$\nabla_{\circ}(z) = 0$$
  
(ii)  $\nabla_{L_{+}}(z) - \nabla_{L_{-}}(z) = z \nabla_{L_{0}}(z)$ 

#### Tablas de Nudos

Con el uso de invariantes más sofisticados y un creciente poder de cómputo se cuenta con tablas cada vez más extensas de nudos primos, incluyendo algunos invariantes (la tabla de Rolfsen, Knot Atlas por Bar Natan, KnotInfo por Cha-Livingston, etc.)

| #C  | 0 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10  |
|-----|---|---|---|---|---|---|----|----|-----|
| #PK | 1 | 1 | 1 | 2 | 3 | 7 | 21 | 49 | 165 |

| #C  | 11  | 12    | 13    | 14     | 15      |
|-----|-----|-------|-------|--------|---------|
| #PK | 552 | 2,176 | 9,988 | 46,972 | 253,293 |

| #C  | 16        | 17        | 18         | 19          |
|-----|-----------|-----------|------------|-------------|
| #PK | 1,388,705 | 8,053,393 | 48,266,466 | 294,130,458 |

Legend: Number of Crossings denoted by #C and number of Prime Knots dentoted by #PK

# **1.1 PCA en el estudio del polinomio de Jones** (R. Sazdanovic, J. Levitt, M. Hajij)

#### Dataset asociado al polinomio de Jones

Se convierte el polinomio de Jones de cada nudo K,  $J(K) = V_K(q)$ , a un vector de coeficientes en  $\mathbb{R}^n$  alineados con relación a  $q^0$ .

| K          | J(K)                                                | $q^0$                                  |
|------------|-----------------------------------------------------|----------------------------------------|
| 01         | 1                                                   | (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)      |
| $mir(3_1)$ | $q + q^3 - q^4$                                     | (0, 0, 0, 0, 1, 0, 1, -1, 0, 0, 0)     |
| 41         | $q^{-2} - q^{-1} + 1 - q + q^2$                     | (0, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0)    |
| $mir(5_1)$ | $q^2 + q^4 - q^5 + q^6 - q^7$                       | (0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1) |
| $mir(5_2)$ | $q - q^2 + 2q^3 - q^4 + q^5 - q^6$                  | (0, 0, 0, 0, 1, -1, 2, -1, 1, -1, 0)   |
| $mir(6_1)$ | $q^{-2} - q^{-1} + 2 - 2q + q^2 - q^3 + q^4$        | (0, 1, -1, 2, -2, 1, -1, 1, 0, 0, 0)   |
| $mir(6_2)$ | $q^{-1} - 1 + 2q - 2q^2 + 2q^3 - 2q^4 + q^5$        | (0, 0, 1, -1, 2, -2, 2, -2, 1, 0, 0)   |
| 63         | $-q^{-3} + 2q^{-2} - 2q^{-1} + 3 - 2q + 2q^2 - q^3$ | (-1, 2, -2, 3, -2, 2, -1, 0, 0, 0, 0)  |

La nube de puntos  $X \subset \mathbb{R}^n$  para el análisis serán los vectores de coeficientes de los polinomios de Jones de los 9,755,329 nudos con a lo más 17 cruces, con la métrica  $I_2$ . Consideremos las filtraciones en X:

Sea \$\mathcal{F}\_{[k]}\$ los vectores de coeficientes de polinomios de Jones de nudos con a lo más k cruces. La filtración por cruces de \$X\$ es:

$$\mathcal{F}_{[3]} \subset \mathcal{F}_{[4]} \subset \cdots \subset \mathcal{F}_{[17]} = X$$

Sean 0 < r<sub>7</sub> < r<sub>6</sub> < ··· < r<sub>0</sub> tales que *F<sub>ri</sub>* ⊂ X son los puntos de norma acotada por r<sub>i</sub> y tiene cardinalidad |X|/2<sup>i</sup>. La filtración por norma de X es:

$$\mathcal{F}_{r_7} \subset \mathcal{F}_{r_6} \subset \cdots \subset \mathcal{F}_{r_0} = X$$

#### PCA en la filtración por norma



*lzquierda*: num. de componente principal vs. factor de varianza normalizado.

*Derecha*: num. de componente principal vs. acumulado de factores de varianza normalizados.

**Observación**: Para  $r_0$  el acumulado  $S_3 > 0.988$ , luego X "aproxima" a una 3-variedad.

・ロト ・ 同ト ・ ヨト ・ ヨト



*Izquierda* radio de la filtración vs. factor de varianza normalizado. *Derecha*: radio de la filtración vs variación de la componente principal (radianes).

**Observación**: Las tres primeras componentes principales tienden a estabilizarse al incrementar el radio de la filtración.

4 1 1 1 4 1 1 1

#### PCA en la filtración por cruces



*Izquierda*: num. de componente principal vs factor de varianza normalizado.

*Derecha*: num. de componente principal vs acumulado de factores de varianza normalizados.

Observación:¿?

< □ > < □ > < □ > < □ > < □ > < □ >



*Izquierda*: número de cruces vs. factor de varianza normalizado. *Derecha*: número de cruces vs. variación de la componente principal (radianes).

**Observación**: ¿Qué explica esa aparente periodicidad en la variación de las componentes principales?

# **1.2 Ball Mapper y la relación de los polinomios de Jones y Alexander con la signatura** (R. Sazdanovic, P. Dlotko)

# Teorema (Garoufalidis 2003)

Para todos los nudos simples de hasta 8 cruces y nudos toroidales, el polinomio de Jones coloreado determina la signatura del nudo

#### Conjetura

El polinomio de Jones coloreado  $J_{N,q}(K)$  de un nudo simple K determina  $\sigma(K)$ .

*Folklore:* El polinomio de Jones determina la signatura pero el polinomio de Alexander no.

(B)

#### Polinomio de Alexander

Análisis exploratorio de la gráfica BM de los datos del polinomio de Alexander de nudos con hasta 17 cruces.



#### Polinomio de Jones

Gráfica BM de los datos del polinomio de Jones de nudos de hasta 17 cruces coloreada por número de cruces.



#### Polinomio de Jones

Gráfica BM de los datos del polinomio de Jones coloreada por valor de signatura.



# **1.3 Al** en el estudio de la relación entre invariantes hiperbólicos y la signatura

(A. Davies / DeepMind, M. Lackenby, A. Juhász)

Davies, A. et al. Nature 600, 70–74 (2021).
 Advancing mathematics by guiding human intuition with AI.

Conjetura (Conjetura del volumen)

Sea  $K \subset \mathbb{S}^3$  un nudo hiperbólico. Entonces

$$\lim_{N \to \infty} \frac{2\pi \log |\langle K \rangle_N|}{N} = \operatorname{vol}(K), \ \ \langle K \rangle_N = \lim_{q \to e^{2\pi i/N}} \frac{J_{K,N}(q)}{J_{0,N}(q)}$$

#### Conjetura

Existen constantes  $c_1$  y  $c_2$  tales que para todo nudo hiperbólico K se satisface:

$$|2\sigma(K) - slope(K)| < c_1 vol(K) + c_2$$

< □ > < A >

. . . . . . .

3



## Teorema

Existe una constante c tal que para todo nudo hiperbólico K se satisface:

$$2\sigma(K) - slope(K)| < c \cdot vol(K) \cdot inj(K)^{-3}$$

э

# 2. Polinomios de gráficas listón y el estudio de 3-variedades

# 2.1 Gráficas de Heegaard

# Definición

Un cubo con n asas M es una 3-variedad compacta, conexa, orientable con  $\partial M \neq \emptyset$  que contiene n discos  $D_1, \ldots, D_n$  propiamente encajados y ajenos por pares tales que  $M | \cup_i D_i$  es homeorfo a una 3-bola.



#### Descomposiciones de Heegaard

Sean  $H_1$  y  $H_2$  dos cubos con asas de género n y sea  $f : \partial H_1 \rightarrow \partial H_2$  un homeomorfismo que invierte orientación. Construimos la 3-variedad compacta y orientable  $M = H_1 \cup_f H_2$  obtenida a partir de  $H_1 \sqcup H_2$  al tomar el cociente dado por  $x \sim f(x)$  para cada  $x \in \partial H_1$ .



A la factorización  $M = H_1 \cup_f H_2$  le llamamos una **descomposición de Heegaard** de M de género n.

#### Teorema

Sea M una 3- variedad compacta, conexa, orientable y sin frontera (triangulable/Moise). Entonces M tiene una descomposición de Heegaard.

< □ > < A >

23 / 45

#### Diagrama de Heegaard

Sea  $M = H_1 \cup_f H_2$  una descomposición de Heegaard de género n y sea  $\Sigma = \partial H_1 = \partial H_2$ . Sea  $\{D_1, \ldots, D_n\}$  y  $\{D'_1, \ldots, D'_n\}$  familias de discos propiamente encajados que descomponen a  $H_1$  y  $H_2$ , respectivamente, en 3-bolas. Sean  $A = \{\alpha_i = f(\partial D_i)\}$  y  $B = \{\beta_i = \partial D'_i\}$  dos familias de g curvas en  $\Sigma$ . A la terna  $(\Sigma, A, B)$  le llamamos un **diagrama de Heegaard** de M.



#### **Grupo Fundamental**

Sea M la 3-variedad que tiene el siguiente diagrama de Heegaard:



Entonces  $\pi_1(M) = \langle x_1, x_2 | x_1 x_2 x_1 x_2^{-1} x_1^{-1} x_2^{-1}, x_1 x_2 x_1^{-2} x_2 x_1 x_2^{-1} \rangle$  por el Teorema de Seifert-Van Kampen.

# 2.2 Polinomios de gráficas listón

# Definición

Sea F una superficie c.c.s. Una gráfica  $G \subset F$  se dice **encajada celularmente** si cada componente en  $F \setminus G$  es homeomorfa a un disco.

# Definición

Una superficie compacta y con frontera, F, se dice una **gráfica listón** si admite una desomposición en asas comenzando por una familia de 0-asas  $v_1, v_2 ..., v_m$  y una familia de 1-asas  $e_1, ..., e_n$  'pegadas' a las 0-asas a lo largo de arcos disjuntos en  $\bigcup \partial v_i$ .

#### Definición

Dos gráficas celularmente encajadas  $G_1 \subset F_1$  y  $G_2 \subset F_2$  en superficies c.c.o.s.  $F_1$  y  $F_2$  son isomorfas como gráficas encajadas celularmente si existe un homeomorfismo  $\varphi : F_1 \to F_2$  tal que su restricción es un isomorfismo de gráficas entre  $G_1$  y  $G_2$ .

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

#### Gráficas encajadas celularmente en superficies y gráficas listón



3

# El polinomio de Tutte

# Definición

Sea G una gráfica finita. El polinomio de Tutte,  $T(G; x, y) \in \mathbb{Z}[x, y]$ , se define como:

$$T(G; x, y) = \sum_{\substack{E(A) \subseteq E(G) \\ V(A) = V(G)}} (x - 1)^{k(A) - k(G)} (y - 1)^{k(A) + e(A) - v(G)}$$

donde:

e(G) := # de aristas de G. v(G) := # de vértices de G. k(G) := # componentes conexas de G.

Propiedades:

 Introducido por Tutte en 1954 y generaliza a los polinomios crómatico y de flujo en gráficas.

ヨト イヨト

• Codifica el número de árboles maximales de una gráfica conexa.

# El polinomio de Penrose

# Definición

Sea G una gráfica encajada celularmente en una superficie F y sea  $G_m$  la gráfica medial de G. El **polinomio de Penrose**,  $P(G; \lambda) \in \mathbb{Z}[\lambda]$ , se define como:

$$\mathcal{P}(G;\lambda) = \sum_{s \in \mathcal{P}(G_m)} (-1)^{cr(s)} \lambda^{c(s)}$$

donde:  $\mathcal{P}(G_m) = \text{conjunto de estados de Penrose de } G_m.$  cr(s) := # resoluciones tipo cruce del estado s.c(s) := # componentes de frontera del estado s.

Propiedades:

- Introducido por Penrose en 1971 y extendido en 2013 por Ellis-Monaghan y Moffat para gráficas en superficies.
- Está relacionado con el número de coloraciones de la gráfica.

# El polinomio listón (Bollobás-Riordan)

# Definición

Sea G una gráfica listón encajada en una superficie c.c.s. El polinomio listón,  $R(G; x, y, z, w) \in \mathbb{Z}[x, y, z, w]/w^2 - w$ , se define como:

$$R(G; x, y, z, w) = \sum_{\substack{E(A) \subseteq E(G) \\ V(A) = V(G)}} (x - 1)^{r(G) - r(A)} y^{n(A)} z^{k(A) - f(A) + n(A)} w^{t(A)}$$

donde:

 $\begin{array}{l} e(G) := \sharp \ de \ aristas \ de \ G. \\ v(G) := \sharp \ de \ vértices \ de \ G. \\ f(G) := \sharp \ componentes \ de \ frontera \ de \ G. \\ k(G) := \sharp \ componentes \ conexas \ de \ G. \\ r(G) := \psi(G) - k(G) \\ n(G) := e(G) - r(G) \\ t(G) := 0 \ si \ G \ es \ orientable \ y \ 1 \ si \ no \ lo \ es. \end{array}$ 

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- 3

#### Ejemplo de cálculo del polinomio listón



Computing the ribbon graph polynomial of G,  $R(G;x,y,z,w) = y^2z^2 + xy + 2y + x + 1$ 

**Complejidad:** Una gráfica listón G tiene  $2^{|E(G)|}$  estados (el conjunto potencia de E(G)).

イヨト イモト イモト

#### Programa para el cálculo del polinomio listón



3. 3

#### Programa para el cálculo del polinomio listón



э

→ ∃ →

#### 2.3 Construcción de las bases de datos (intento 1)

Polinomio listón

 $\begin{array}{l} \textbf{L(3,1):} \ 6^*x + y^{**}4^*z^{**}2 + 6^*y^{**}3^*z^{**}2 + 12^*y^{**}2^*z^{**}2 + 3^*y^{**}2 + 3^*y^{*}(x - 1) + 20^*y + (x - 1)^{**}2 + 6 \\ \textbf{L(3,2):} \ 6^*x + y^{**}4^*z^{**}2 + 6^*y^{**}3^*z^{**}2 + 12^*y^{**}2^*z^{**}2 + 3^*y^{**}2 + 3^*y^{*}(x - 1) + 20^*y + (x - 1)^{**}2 + 6 \\ \textbf{L(3,1):} \ 6^*x + y^{**}6^*z^{**}2 + 10^*y^{**}5^{*}z^{**}2 + 10^*y^{**}4^*z^{*}2 + 5^*y^{**}4 + 80^*y^{**}3^*z^{**}2 + 10^*y^{**}3^*(x - 1) + 40^*y^{**}3 + 80^*y^{**}2^*z^{*}2 + 10^*y^{**}3^*z^{*}2 + 10^*y^{**}3^*(x - 1) + 120^*y^{**}2 + 5^*y^{*}(x - 1)^{**}3 + 40^*y^{*}(x - 1)^{**}2 + 120^*y^{*}(x - 1) + 120^*y^{*}2^*z^{*}2 + 10^*y^{*}5^*z^{*}2 + 10^*y^{*}5^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 5^*y^{**}3^*z^{*}2^{*}(x - 1) + 110^*y^{**}3^*z^{**}2 + 10^*y^{**}3 + 20^*y^{*}2^*z^{*}2^{*}(x - 1) + 125^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}(x - 1) + 80^*y^{**}2 + 10^*y^{*}(x - 1)^{**}2 + 85^*y^{*}(x - 1) + 222^*y + (x - 1)^{**}4 + 10^*(x - 1)^{**}3 + 45^*(x - 1)^{**}2 + 15^*y^{**}4^*z^{*}2 + 5^*y^{**}3^*z^{*}2^{*}2^{*}(x - 1) + 110^*y^{*}3^*z^{*}2 + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2^{*}(x - 1) + 110^*y^{*}3^*z^{*}2^{*} + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2^{*}(x - 1) + 110^*y^{*}3^*z^{*}2^{*}2 + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}3 + 20^*y^{*}2^*z^{*}2 + 10^*y^{*}2^*z^{*}2 + 10^*y^{*}3^*z^{*}2 + 10^*y^{*}$ 

Polinomio de Tutte

 $\begin{array}{l} \textbf{L(3, 1): } y^{**4} + 2^*y^{**3} + x^{**2} + 3^*x^*y + 3^*y^{**2} + x + y \\ \textbf{L(4, 1): } y^{**5} + 3^*y^{**4} + x^{**3} + 4^*x^{**2}^*y + 6^*x^*y^{**2} + 6^*y^{**3} + x^{**2} + 4^*x^*y + 4^*y^{**2} + x + y \\ \textbf{L(5, 1): } y^{**6} + 4^*y^{**5} + x^{**4} + 5^*x^{**3}y + 10^*x^{*2}y^{**2} + 10^*x^*y^{**3} + 10^*y^{**4} + x^{**3} + 5^*x^{*2}y + 10^*x^*y^{**2} + 10^*x^*y^{**3} + x^{**2} + 5^*x^*y + 5^*y^{**2} + x + y \\ \textbf{L(5, 2): } y^{**6} + 4^*y^{**5} + x^{**4} + 5^*x^*y^{**3} + 10^*y^{**4} + 6^*x^{**3} + 10^*x^{*2}y + 15^*x^*y^{**2} + 15^*y^{**2} + 15^*y^{**2} + 26^*x + 6^*y \\ \textbf{L(6, 1): } y^{**7} + 5^*y^{**6} + x^{**5} + 6^*x^{*4}4y + 15^*x^{*3}y^{**2} + 20^*x^{*2}y^{**3} + 15^*x^{*y}x^{*4} + 15^*y^{**5} + x^{**4} + 6^*x^{**3}y \\ \textbf{L(6, 1): } y^{**7} + 5^*y^{**6} + x^{**5} + 6^*x^{*4}4y + 15^*x^{*2}y^{*} + 15^*x^{*y}x^{*2} + 15^*x^{*y}x^{*3} + x^{*2} + 6^*x^{*y} + 6^*x^{*3}y + 15^*x^{*y}x^{*2} + 15^*x^{*y}x^{*3} + x^{*2} + 6^*x^{*y} + 6^*x^{*2}y + x + y \\ \textbf{L(5, 2): } y^{**7} + 5^*y^{**6} + x^{**5} + 6^*y^{**4} + x^{**3} + 6^*x^{**2}y^{**2} + 15^*x^{*y}x^{*3} + 15^*x^{*y}x^{*4} + 15^*y^{**5} + x^{**4} + 6^*x^{**3}y \\ \textbf{L(6, 1): } y^{**7} + 5^*y^{**6} + x^{**5} + 6^*x^{*4}y^{*4} + x^{**3} + 6^*x^{*2}y^{*4} + 15^*x^{*y}x^{*3} + 15^*x^{*y}x^{*3} + x^{*2} + 6^*y^{*y} + 6^*y^{*2} + x + y \\ t^{5}x^{*2}y^{*1} + 5^*y^{*1}y^{*1} + x^{*1}y^{*1} + x^{$ 

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Polinomio de Penrose

イロト 不得下 イヨト イヨト 二日

Esfera homológica de Poincaré.



#### Tiene polinomio listón

 $\begin{aligned} &414720^*x + y^{*}13^*z^{*}4 + 24^*y^{*}12^*z^{*}4 + 268^*y^{*}11^*z^{*}4 + 8^*y^{*}11^*z^{*}2 + 6^*y^{*}10^*z^{*}4^*(x-1) + 1844^*y^{*}10^*z^{*}4 + 13^*y^{*}10^*z^{*}2^*(x-1) + 180^*y^{*}10^*z^{*}2 + 110^*y^{*}9^*z^{*}4^*(x-1) + 8704^*y^{*}9^*z^{*}4 + 11^*y^{*}9^*z^{*}2^*(x-1)^{*}2 + 270^*y^{*}9^*z^{*}2^*(x-1) + 1888^*y^{*}9^*z^{*}2 + 15^*y^{*}9 + 8^*y^{*}8^*z^{*}4^*(x-1)^{*}2 + 908^*y^{*}8^*z^{*}4^*(x-1) + 29552^*y^{*}8^*z^{*}4 + 5^*y^{*}8^*z^{*}4^*(x-1)^{*}2 + 29552^*y^{*}8^*z^{*}4^*(x-1)^{*}2 + 2652^*y^{*}8^*z^{*}4^*(x-1) + 224^*y^{*}8^*z^{*}2 + 49^*y^{*}8^*(x-1) + 328^*y^{*}8 + 108^*y^{*}7^*z^{*}4^*(x-1)^{*}2 + 4352^*y^{*}7^*z^{*}4^*(x-1) + 7308^*y^{*}7^*z^{*}4 \dots \end{aligned}$ 

(日) (同) (日) (日)

 $\dots + y^{**7*z^{**2*}(x-1)^{**4} + 108^*y^{**7*z^{**2*}(x-1)^{**3} + 2127^*y^{**7*z^{**2*}(x-1)^{**2} + 16174^*y^{**7*z^{**2*}(x-1) + 2}}$  $54520^*y^{**7*}z^{**2} + 91^*y^{**7*}(x-1)^{**2} + 1020^*y^{**7*}(x-1) + 3368^*y^{**7} + 8^*y^{**6*}z^{**4*}(x-1)^{**3} + 620^*y^{**6*}z^{**4*}(x-1)^{**3} + 620^*y^{**6*}z^{**6*}z^{**4*}(x-1)^{**3} + 620^*y^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6*}z^{**6$  $1)^{*2} + 12944^{*}y^{*6}z^{**4}(x-1) + 129024^{*}y^{*6}z^{**4} + 30^{*}y^{**6}z^{**2}(x-1)^{**4} + 1086^{*}y^{**6}z^{**2}(x-1)^{**3} + 1086^{*}y^{**6}z^{**2}(x-1)^{**4} + 1086^{*}y^{**6}z^{**2}(x-1)^{**6} + 1086^{*}y^{**6}z^{**2} + 1086^{*}y^{**6}z^{**6} + 1086^{*}y^{**6} + 1086^{*}y^{**6}z^{**6} + 1086^{*}y^{**6} + 1086^{$ 12536\*y\*\*6\*z\*\*2\*(x-1)\*\*2 + 67212\*y\*\*6\*z\*\*2\*(x-1) + 173840\*y\*\*6\*z\*\*2 + 131\*y\*\*6\*(x-1)\*\*3 + 1848\*y\*\*6\*(x-1)\*\*3 + 1848\*y\*\*3 + 1848\*y\*\*3 + 1848\*y\*\*3 + 1848\*y\* $1)^{**2} + 10048^*y^{**6*}(x-1) + 21464^*y^{**6} + 48^*y^{**5*}z^{**4*}(x-1)^{**3} + 1736^*y^{**5*}z^{**4*}(x-1)^{**2} + 23008^*y^{**5*}z^{**4*}(x-1)^{**2} + 23008^*y^{**5}z^{**4*}(x-1)^{**2} + 23008^*y^{**5}z^{**4} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5}z^{**4} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5}z^{**4} + 23008^*y^{**5}z^{**4} + 23008^*y^{**5}z^{**4} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5} + 23008^*y^{**5}z^{**5} + 23008^*y^{**5} + 23008^*y^{*$ 49104\*y\*5\*z\*2\*(x-1)\*2 + 195140\*y\*5\*z\*2\*(x-1) + 398960\*y\*5\*z\*2 + 168\*y\*5\*(x-1)\*4 + 2622\*y\*5\*(x-1)\*4 + 262\*y\*5\*(x-1)\*4 + 262\*y\*5\*(x-1)\*2 + 262\*y\*24368\*y\*\*4\*z\*\*2\*(x-1)\*\*3 + 126096\*y\*\*4\*z\*\*2\*(x-1)\*\*2 + 384696\*y\*\*4\*z\*\*2\*(x-1) + 636576\*y\*\*4\*z\*\*2 + y\*\*4\*(x-1)\*\*2 + 384696\*y\*\*4\*z\*\*2 + y\*\*4\*(x-1)\*\*2 + 384696\*y\*\*4\*z\*\*2 + y\*\*4\*(x-1)\*\*2 + 384696\*y\*\*4\*z\*\*2 + y\*\*4\*(x-1)\*\*2 + 384696\*y\*\*4\*z\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 38469\*y\*\*2\*(x-1)\*\*2 + 38469\*y\*\*2\*(x-1)\*\*2 + 384696\*y\*\*2\*(x-1)\*\*2 + 38469\*y\*\*2\*(x-1)\*\*2 + 38469\*y\*\*2\*( $1)^{**7} + 16^{*}y^{**4*}(x-1)^{**6} + 308^{*}y^{**4*}(x-1)^{**5} + 3670^{*}y^{**4*}(x-1)^{**4} + 25126^{*}y^{**4*}(x-1)^{**3} + 103348^{*}y^{**4*}(x-1)^{**6} + 308^{*}y^{**4*}(x-1)^{**6} + 308^{*}y^{**4*}(x-1)^{*}y^{**6} + 308^{*}y^{**4*}(x-1)^{*}y^{**6} + 308^{*}y^{**6} +$  $1)^{**2} + 248024^{*}y^{**4}(x-1) + 286528^{*}y^{**4} + 36^{*}y^{**3}z^{**2}(x-1)^{**6} + 814^{*}y^{**3}z^{**2}(x-1)^{**5} + 8404^{*}y^{**3}z^{**2}(x-1)^{**6} + 814^{*}y^{**3}z^{**2}(x-1)^{**6} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3}(x-1)^{*}y^{**3} + 814^{*}y^{**3} + 814^{*$  $-1)^{**4} + 50528^*y^{**3}z^{**2*}(x-1)^{**3} + 192224^*y^{**3}z^{**2*}(x-1)^{**2} + 464576^*y^{**3}z^{**2*}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2*}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2*}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2}(x-1) + 627520^*y^{**3}z^{**2} + 64576^*y^{**3}z^{**2} + 62576^*y^{**3}z^{**2} + 627576^*y^{**3} + 62757$ 4\*y\*3\*(x-1)\*8 + 72\*y\*3\*(x-1)\*7 + 763\*y\*3\*(x-1)\*6 + 5942\*y\*3\*(x-1)\*5 + 33922\*y\*3\*(x-1)\*4 + 9444137752\*y\*\*3\*(x-1)\*\*3 + 383192\*y\*\*3\*(x-1)\*\*2 + 676640\*y\*\*3\*(x-1) + 611584\*y\*\*3 + 8\*y\*\*2\*z\*\*2\*(x-1)\*\*7 + 611584\*y\*\*3 + 611584\*y\*156\*y\*\*2\*z\*\*2\*(x-1)\*\*6 + 1584\*y\*\*2\*z\*\*2\*(x-1)\*\*5 + 10224\*y\*2\*z\*\*2\*(x-1)\*\*4 + 44288\*y\*\*2\*z\*\*2\*(x-1)\*\*3 + 10224\*y\*2\*z\*\*2\*(x-1)\*\*4 + 10224\*y\*2\*z\*\*2\*(x-1)\*\*3 + 10224\*y\*2\*z\*\*2\*(x-1)\*\*4 + 10224\*y\*2\*z\*\*2\*(x-1)\*\*2 $130432^{*}y^{**}2^{*}z^{**}2^{*}(x-1)^{**}2 + 250880^{*}y^{**}2^{*}z^{**}2^{*}(x-1) + 262144^{*}y^{**}2^{*}z^{**}2 + 6^{*}y^{**}2^{*}(x-1)^{**}9 + 120^{*}y^{**}2^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{**}9 + 120^{*}y^{*}(x-1)^{*}9 + 120$  $+ 1204^{*}y^{**2*}(x-1)^{**7} + 8084^{*}y^{**2*}(x-1)^{**6} + 40007^{*}y^{**2*}(x-1)^{**5} + 149964^{*}y^{**2*}(x-1)^{**4} + 422248^{*}y^{**2*}(x-1)^{**6} + 40007^{*}y^{**2*}(x-1)^{**6} + 40007^{*}y^{**2} + 4000$  $1)^{**3} + 860944^*y^{**2}(x-1)^{**2} + 1171712^*y^{**2}(x-1) + 851968^*y^{**2} + 4^*y^*(x-1)^{**10} + 88^*y^*(x-1)^{**9} + 928^*y^*(x-1)^{**10} + 88^*y^*(x-1)^{**10} + 88^*y$  $1)^{**8} + 6256^{*}y^{*}(x-1)^{**7} + 30164^{*}y^{*}(x-1)^{**6} + 109616^{*}y^{*}(x-1)^{**5} + 306296^{*}y^{*}(x-1)^{**4} + 654912^{*}y^{*}(x-1)^{**3} + 654912^{*}y^{*}(x-1)^{**4} + 654912^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{**4} + 654912^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{*}y^{*}(x-1)^{$ 1037248\*y\*(x-1)\*\*2 + 1121792\*y\*(x-1) + 656000\*y + (x-1)\*\*11 + 24\*(x-1)\*\*10 + 272\*(x-1)\*\*9 + 1936\*(x-1)\*\*8226304

#### Tiene polinomio de Penrose

 $z^{**12} - 24^*z^{**11} + 553^*z^{**10} - 6186^*z^{**9} + 42664^*z^{**8} - 193904^*z^{**7} + 595168^*z^{**6} - 1238528^*z^{**5} + 1718528^*z^{**4} - 1518592^*z^{**3} + 770816^*z^{**2} - 170496^*z^{**2} - 120496^*z^{**2} - 1204$ 

#### El caso de los espacios lente

# Teorema (Clasificación de espacios lente)

Los espacios lente L(p,q) y L(p',q') son homeomorfos si y solo si p = p' y  $q' \equiv \pm q^{\pm 1} (mod \ p).$ 

# Proposición

Si L(p,q) y L(p,q') son espacios lente homeomorfos, entonces las gráficas listón asociadas a dichos espacios lente son isomorfas.





#### Corolario

Si L(p,q) y L(p,q') son homeomorfos, entonces los polinomios de Tutte, (Penrose, listón) asociados dichos espacios son iguales. Es decir, los polinomios son invariantes de los espacios lente.



#### Lema

Si G es la gráfica de Heegaard asociada a L(p,q), el coeficiente de la potencia máxima de la variable y en el polinomio de Tutte es 1 y su exponente es p + 1.

# Proposición

Sea  $P(G; \lambda)$  el polinomio de Penrose de la gáfica celularmente encajada en un toro correspondiente al espacio lente L(p, q), entonces

(i) 
$$P(G; \lambda)(1) = 0$$
  
(ii)  $P(G; \lambda)(2) = 2^{p}$ 

De acuerdo al Teorema de Reidemeister-Singer, algunas operaciones importantes en diagramas de Heegaard que preservan la 3-variedad son: tomar la suma conexa de dos curvas en uno de los sistemas de curvas, giros de Dehn a lo largo de fronteras de discos meridianos y las estabilizaciones/desestabilizaciones. ¿Cómo se comportan estas operaciones con los polinomios?



#### Construcción de gráficas de Heegaard de género dos



#### Lema

Las gráficas de Heegaard de género dos de  $\mathbb{S}^3$  obtenidas de túneles de nudos están encajadas celularmente en la superficie de Heegaard.

#### El árbol de túneles de nudos

[1] S. Cho, D. McCullough, *The tree of knot tunnels*, Geometry and Topology 13(2) (2006), 625-648.



# ¡MUCHAS GRACIAS!

4 3 > 4 3

э